Abstract
The ever-growing drug resistance problem worldwide highlights the urgency to discover and develop new drugs. Microbial natural products are a prolific source of drugs. Genome sequencing has revealed a tremendous amount of uncharacterized natural product biosynthetic gene clusters (BGCs) encoded within microbial genomes, most of which are cryptic or express at very low levels under standard culture conditions. Therefore, developing effective strategies to awaken these cryptic BGCs is of great interest for natural product discovery. In this study, we designed and validated a Transcription-Translation in One (TTO) approach for activation of cryptic BGCs. This approach aims to alter the metabolite profiles of target strains by directly overexpressing exogenous rpsL (encoding ribosomal protein S12) and rpoB (encoding RNA polymerase β subunit) genes containing beneficial mutations for natural product production using a plug-and-play plasmid system. As a result, this approach bypasses the tedious screening work and overcomes the false positive problem in the traditional ribosome engineering approach. In this work, the TTO approach was successfully applied to activating cryptic BGCs in three Streptomyces strains, leading to the discovery of two aromatic polyketide antibiotics, piloquinone and homopiloquinone. We further identified a single BGC responsible for the biosynthesis of both piloquinone and homopiloquinone, which features an unusual starter unit incorporation step. This powerful strategy can be further exploited for BGC activation in strains even beyond streptomycetes, thus facilitating natural product discovery research in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.