Abstract

The envelope glycoproteins (Env) of HIV-1 mediate cell entry through fusion of the viral envelope with a target cell membrane. Intramembrane mobility and clustering of Env trimers at the viral budding site are essential for its function. Previous live-cell and super-resolution microscopy studies were limited by lack of a functional fluorescent Env derivative, requiring antibody labeling for detection. Introduction of a bio-orthogonal amino acid by genetic code expansion, combined with click chemistry, offers novel possibilities for site-specific, minimally invasive labeling. Using this approach, we established efficient incorporation of non-canonical amino acids within HIV-1 Env in mammalian cells. The engineered protein retained plasma membrane localization, glycosylation, virion incorporation, and fusogenic activity, and could be rapidly and specifically labeled with synthetic dyes. This strategy allowed us to revisit Env dynamics and nanoscale distribution at the plasma membrane close to its native state, applying fluorescence recovery after photo bleaching and STED nanoscopy, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.