Abstract

Neural stimulation and recording in rodents are common methods to better understand the nervous system and improve the quality of life of individuals who are suffering from neurological disorders (e.g., epilepsy), as well as for permanent reduction of chronic pain in patients with neuropathic pain and spinal-cord injury. This method requires a neural interface (e.g., a headmount) to couple the implanted neural device with instrumentation system. The size and the total weight of such headmounts should be designed in a way to minimize its effect on the movement of the animal. This is a crucial factor in gait, kinematic, and behavioral neuroscience studies of freely moving mice. Here we introduce a lightweight ‘snap-in’ electro-magnetic headmount that is extremely small, and uses strong neodymium magnetics to enable a reliable connection without sacrificing the lightweight of the device. Additionally, the headmount requires minimal surgical intervention during the implantation, resulting in minimal tissue damage. The device has demonstrated itself to be robust, and successfully provided direct electrical stimulation of nerve and electrical muscle stimulation and recording, as well as powering implanted LEDs for optogenetic use scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.