Abstract

Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

Highlights

  • Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion

  • ANOVA results revealed that significant main effects of neuromuscular electrical stimulation (NMES) intervention were found on oxygen consumption (P < 0.0001), total calories (P < 0.0001), and RER (P = 0.0002)

  • The post-hoc analysis showed only stimulation intensity equal to or greater than motor threshold significantly elicited the increase on oxygen consumption and calories

Read more

Summary

Introduction

Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. Excessive weight may predispose to exercise-related injury and discourage people to participate in exercise [4,5,6], which may further prevent individuals from becoming active and cause a vicious cycle to develop. As health promotion is gaining significant attention, NMES is introduced to augment physical fitness and reduce the risk of heart disease. NMES is provided as an alternative to more conventional forms of exercise to encourage increases in physical activity. This is especially true in the case of those who are unable to engage in physical exercise or have barriers to participation, such as individuals with stroke or spinal cord injury (SCI).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.