Abstract
Nowadays, multi-shelled mesoporous hollow metal oxide nanospheres have drawn a lot of attention due to their large internal space, nanometer scaled shell thickness, high specific surface area and well-defined mesopores, of which unique nanostructure endows metallic oxides with enhanced properties. In this thesis, we have studied and proposed a versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxides and oxides nanospheres, in which silica nanospheres act as sacrificial templates and the coordination interaction between metal ions and surfactant can be cooperatively amplified by using chelating ligand (ascorbic acid) as a co-template. The synthesized metal hydroxides and oxides nanospheres possess stable hollow structure, uniform spherical morphology and tunable diameter from 270 to 690 nm. All the multi-shelled mesoporous hollow metal hydroxide and metal oxide nanospheres exhibit high surface areas (up to 640 m2/g). The obtained Au nanoparticles loaded composited nanospheres exhibit excellent reactivity for solvent-free aerobic oxidation of ethylbenzene with high activity (28.2%) and selectivity (87%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.