Abstract
With unique physical and chemical properties and porous architectures, mesoporous transition metal hydroxide (MMHO) and oxide (MMO) nanospheres hold great potential for various applications in drug delivery, catalysis, energy storage and conversion. However, synthesizing MMHO and MMO with well-defined mesostructures remains a great challenge because of the weak interaction between surfactants and metal precursors. Herein we describe a chelation-induced cooperative self-assembly system in which the weak interaction can be cooperatively amplified through the use of a chelating ligand acting as a co-template. Both MMHO and MMO nanospheres with tunable diameters and high surface areas can be readily synthesized via this strategy. The as-synthesized mesoporous ZnO nanospheres exhibit excellent photoelectric performance, and as a highly efficient oxygen evolution reaction (OER) catalyst of low cost, the calcined Cu(OH)2 nanospheres exhibit one of the best activities for the OER. Moreover, this cooperative method gives rise to an alternative to "classical" self-assembly methods for the preparation of mesostructured nanomaterials and, in some cases, the only viable synthetic route toward MMHO and MMO nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.