Abstract

In this study we instituted an innovative, cost-effective, green and versatile methodology to produce a series of PLA-based open-pore porous blends with high porosity and interconnectivity as well physico-mechanical properties suitable for tissue engineering application. Parent poly-L-lactic acid (PLA) blend was prepared by melt-blending using crosslinked sodium polyacrylate particles as a porogen, commonly used as superabsorbent polymer (SAP). The obtained biphasic systems showed a regular distribution of SAP particles with diameters up to about 50 μm and, most importantly, retained their superabsorbent ability within the thermoplastic PLA based matrices that facilitated swelling followed by leaching out from PLA based matrices in aqueous environment generating very high porosity. Very importantly, versatility of this developed methodology was judged by accommodating different polymers, such as, poly (3-hydroxybutyrate) (PHB) poly (ɛ-caprolactone) (PCL) or poly (ethylene glycol) (PEG) or wood-cellulose microfiber (SP) to generate monophasic, biphasic, plasticized or reinforced blends, respectively, under identical benign condition. These blends were analyzed morphologically, thermally and mechanically to evaluate the degree of miscibility, thermal stability and mechanical property to apply as scaffolds in tissue engineering. Finally, all these scaffolds allowed good cell adhesion and proliferation during culture of mouse embryo fibroblasts cell line. Hence, this methodology of producing PLA-based polymeric system stunned with processability to accommodate other biocompatible polymers allows selectively modifying biomaterial properties for target application and appears very promising platform for several applications, particularly for scaffold production in tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.