Abstract

Venoms are used by arthropods either to immobilise prey or as defence against predators. Our study focuses on the venom peptide, Ta3a, from the African ant species, Tetramorium africanum and its effects on voltage-gated sodium (NaV) channels, which are ion channels responsible for the generation of electrical signals in electrically excitable cells, such as neurons. Using the NaV1.7 isoform as our model NaV channel we show that Ta3a prolongs single channel active periods with increased open probability and induces non-inactivating whole-cell currents. Ta3a-affected NaV1.7 channels exhibit a leftward (hyperpolarising) shift in activation threshold, constitutive activity even in the absence of an activating voltage stimulus, and at cell membrane voltages where channels are normally silent. Current-voltage experiments show that Ta3a shifts the voltage at which NaV current changes direction (reversal potential) by altering the local ionic concentration of permeant ions (Na+) rather than changing the channel’s preference for ionic species. We propose a model where Ta3a maintains the positively charged voltage-sensing (S4) domains of the channel in the activated configuration where their electric field is exposed to the extracellular membrane surface to create an ionic bilayer comprising S4 domains and mobile anions (Cl−). This bilayer has a depolarising effect on the cell membrane, thus reducing the amount of externally applied voltage required for channel activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.