Abstract
In the present work, a new method for simulation of rarefied gas flows is proposed, a velocity-space hybrid of both a DSMC representation of particles and a discrete velocity quasi-particle representation of the distribution function. The hybridization scheme is discussed in detail, and is numerically verified for two test-cases: the BKW relaxation problem and a stationary Maxwellian distribution. It is demonstrated that such a velocity-space hybridization can provide computational benefits when compared to a pure discrete velocity method or pure DSMC approach, while retaining some of the more attractive properties of discrete velocity methods. Further possible improvements to the velocity-space hybrid approach are discussed.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have