Abstract

We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.