Abstract

BackgroundEurycea sosorum (Barton Springs salamander) and Eurycea nana (San Macros salamander) are listed as endangered and threatened species, respectively, by the U.S. Fish and Wildlife Service (USFWS) with habitats restricted to small regions near Austin, Texas, USA. The conservation efforts with the Eurycea salamanders at the captive breeding program in San Marcos Aquatic Resources Center (SMARC), a USFWS facility, have seen an unexpected and increased mortality rate over the past few years. The clinical signs of sick or dead salamanders included erythema, tail loss, asymmetric gills or brachial loss, rhabdomyolysis, kyphosis, and behavior changes, suggesting that an infectious disease might be the culprit. This study aimed to identify the cause of the infection, determine the taxonomic position of the pathogen, and investigate the potential reservoirs of the pathogen in the environment.ResultsHistopathological examination indicated microsporidian infection (microsporidiosis) in the sick and dead Eurycea salamanders that was later confirmed by PCR detection. We also determined the near full-length small subunit ribosomal RNA (SSU rRNA) gene from the microsporidian pathogen, which allowed us to determine its phylogenetic position, and to design primers for specific and sensitive detection of the pathogen. Phylogenetic analysis indicated that this pathogen was closely related to the insect parasites Vavraia spp. and the human opportunistic pathogen, Trachipleistophora hominis. This Vavraia-like microsporidium was present in dead salamanders at SMARC archived between 2011 and 2015 (positive rates ranging between 52.0–88.9% by PCR detection), as well as in some aquatic invertebrates at the facility (e.g. snails and small crustaceans).ConclusionsA Vavraia-like microsporidian was at least one of the major pathogens, if not solely, responsible for the sickness and mortality in the SMARC salamanders, and the pathogen had been present in the center for years. Environmental invertebrates likely served as a source and reservoir of the microsporidian pathogen. These observations provide new knowledge and a foundation for future conservation efforts for Eurycea salamanders including molecular surveys, monitoring of the pathogen, and discovery of effective treatments.

Highlights

  • Eurycea sosorum (Barton Springs salamander) and Eurycea nana (San Macros salamander) are listed as endangered and threatened species, respectively, by the U.S Fish and Wildlife Service (USFWS) with habitats restricted to small regions near Austin, Texas, USA

  • The San Marcos Aquatic Resources Center (SMARC) is a United States Fish and Wildlife Service (USFWS) facility located on the south side of Austin with the primary mission “to provide support for, and undertake research on, endangered, threatened, and species at risk”, including the efforts on E. sosorum and E. nana

  • There has been a progressive increase in salamander mortality at SMARC, where up to a 10% fatality rate was observed during the summer months in some tanks hosting E. sosorum and E. nana, which threatened the conservation of these two salamander species

Read more

Summary

Introduction

Eurycea sosorum (Barton Springs salamander) and Eurycea nana (San Macros salamander) are listed as endangered and threatened species, respectively, by the U.S Fish and Wildlife Service (USFWS) with habitats restricted to small regions near Austin, Texas, USA. The conservation efforts with the Eurycea salamanders at the captive breeding program in San Marcos Aquatic Resources Center (SMARC), a USFWS facility, have seen an unexpected and increased mortality rate over the past few years. The San Marcos Aquatic Resources Center (SMARC) is a United States Fish and Wildlife Service (USFWS) facility located on the south side of Austin with the primary mission “to provide support for, and undertake research on, endangered, threatened, and species at risk” (https://www.fws.gov/ southwest/fisheries/san_marcos/index.html), including the efforts on E. sosorum and E. nana. While more comprehensive morphological and molecular data are needed to name the exact species of the parasitic microsporidium, we were able to develop a nested PCR-based method to detect the presence of the pathogen in the salamanders for epidemiological surveys and in the zooplanktons for identification of potential sources of the pathogen

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call