Abstract

ABSTRACT Background and Objectives: In this article, we propose an image segmentation model based on Chan-Vese (CV) for image segmentation. By taking into account the local features of the image, the new proposed model can successfully segment images with intensity nonuniformity. Materials and Methods: We quantitatively compare our method with other two state-of-the-art algorithms, namely, CV model and local binary fitting (LBF) model in segmenting synthetic MR images with the ground truth from BrainWeb; the data can be available at: https://www.mni/mcgill.ca/brainweb/. For segmenting the missing and weak boundaries, to deal with the intensity inhomogeneity, based on the LBF model, we introduced the convex total variation regularization term, for explicit smoothing of the level set function ø. The evolution equation will be solved through the level set method of calculus of variations. Results: In the experimental processing, we use some real images and magnetic resonance imaging brain images as the experimental images, to validate the stabilization of algorithm. The experimental results on comprehensive and sincerity images show the outstanding of our proposed model with reference to stabilization and availability. Conclusions: We propose a new segmentation local information of an image and introduce a new regularization functional is to keep the level set function smooth. Finally, various experimental results on real and low-contrast image, showing which is a powerful type of images, including some that would be difficult to segment with gradient-based methods. In addition, the advantages of the proposed model are better than CV model and the LBF model. Our new model can effectively segment a real image.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call