Abstract

SummaryIn this paper, we study a deblurring algorithm for distorted images by random impulse response. We propose and develop a convex optimization model to recover the underlying image and the blurring function simultaneously. The objective function is composed of 3 terms: the data‐fitting term between the observed image and the product of the estimated blurring function and the estimated image, the squared difference between the estimated blurring function and its mean, and the total variation regularization term for the estimated image. We theoretically show that under some mild conditions, the resulting objective function can be convex in which the global minimum value is unique. The numerical results confirm that the peak‐to‐signal‐noise‐ratio and structural similarity of the restored images by the proposed algorithm are the best when the proposed objective function is convex. We also present a proximal alternating minimization scheme to solve the resulting minimization problem. Numerical examples are presented to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.