Abstract

A new four-point implicit block multistep method is developed for solving systems of first-order ordinary differential equations with variable step size. The method computes the numerical solution at four equally spaced points simultaneously. The stability of the proposed method is investigated. The Gauss–Seidel approach is used for the implementation of the proposed method in the P E ( C E ) m mode. The method is presented in a simple form of Adams type and all coefficients are stored in the code in order to avoid the calculation of divided difference and integration coefficients. Numerical examples are given to illustrate the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.