Abstract

The intron positions found in globin genes of plants, protozoa and invertebrates have been interpreted as evidence for a threeintron-four-exon structure of the ancestral globin gene. In particular, the so-called ‘central’ introns, which are not found in vertebrate globin genes but are present in a variety of invertebrate and plant species, have been used as an argument for an ancestral gene structure featuring three introns. We have analyzed the presence or absence of central introns in the Gb genes 2β, 9 and 7A of various European and Australasian species of the insect Chironomus. We find unrelated central introns at different positions in some of the species investigated, while other species completely lack introns in these genes. This variable distribution of introns is parsimoniously explained by independent intron additions. Such a gain of introns may occur convergently at identical positions in unrelated taxa. Insertion by gene conversion may be a viable mechanism to explain intron gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.