Abstract
The intron positions found in globin genes of plants, protozoa and invertebrates have been interpreted as evidence for a threeintron-four-exon structure of the ancestral globin gene. In particular, the so-called ‘central’ introns, which are not found in vertebrate globin genes but are present in a variety of invertebrate and plant species, have been used as an argument for an ancestral gene structure featuring three introns. We have analyzed the presence or absence of central introns in the Gb genes 2β, 9 and 7A of various European and Australasian species of the insect Chironomus. We find unrelated central introns at different positions in some of the species investigated, while other species completely lack introns in these genes. This variable distribution of introns is parsimoniously explained by independent intron additions. Such a gain of introns may occur convergently at identical positions in unrelated taxa. Insertion by gene conversion may be a viable mechanism to explain intron gain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have