Abstract
The present work describes a sensitive, simple, cost-effective and fast analytical procedure to detect the parabens in industrial waste effluent water samples using novel activated carbon nanofiber (CNF) modified filter paper based solid phase extraction technique coupled with liquid chromatography with photodiode array detector (UPLC-PDA). The carbon nanofiber coated filter paper was used as an adsorbent and also characterized by field emission scanning electron microscope (FESEM) showed superior porous structure. Various factors effecting the adsorption and desorption process were studied. The optimum parameters which improve the efficiency are paper length 1 cm × 2 cm, adsorption time 15 min, eluent methanol, eluent volume 5 mL, sample pH 7, desorption time 2 min, 2% salt addition and 300 rpm stirring rate respectively. The parabens exhibited superior linearity ranging from 0.1-50 ng mL-1. The regression coefficient (R2) value ranging from 0.9981-0.9989. This method exhibited good sensitivity with the quantification limit (LOQ) between 0.5-0.75 ng mL-1 and detection limit (LOD) over the range of 0.1-0.25 ng mL-1. The precision was expressed from the RSDs values from 0.74-0.97 %. The spiked analytes revealed excellent recoveries in the range of 95.30-116.72 % with RSD less than 5.72 % for all the water samples also applied for real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.