Abstract

In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost high-temperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron silicon-on-insulator (SOI) high-voltage process. The prototype chip has been successfully tested up to 200°C ambient temperature without any heat sink or cooling mechanism. This gate-driver chip can drive SiC power FETs of the DC-DC converters in a HEV, and future chip modifications will allow it to drive the SiC power FETs of the traction drive inverter. The converter modules along with the gate-driver chip will be placed very close to the engine where the temperature can reach up to 175ΰC. Successful operation of the chip at this temperature with or without minimal heat sink and without liquid cooling will help achieve greater power-to-volume as well as power-to-weight ratios for the power electronics module.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.