Abstract

AbstractConventional charge storage mechanisms for electrode materials are common in widely exploited insertion/extraction processes, while some sporadic examples of chemical conversion mechanisms exist. It is perceived to be of huge potential, but it is quite challenging to develop new battery chemistry to promote battery performance. Here, an initiating and holistic deposition–dissolution battery mechanism for both cathodes and anodes is reported. A MnO2–Cu battery based on this mechanism demonstrates outstanding energy density (27.7 mWh cm−2), power density (1232 mW cm−2), high reversibility, and unusual Coulombic efficiency. It can be charged to 0.8 mAh cm−2 within 42 s and possessees a stable rate cyclability within vastly varied discharging current density (4–64 mA cm−2). Moreover, the deposition–dissolution mechanism can be universally adopted and derived such that the corresponding MnO2–Zn and MnO2–Bi batteries are successfully constructed. The material selection principle, deposition–dissolution behaviors of cathode/anode materials, and battery performance are systematically elaborated. Since the electrodeposition chemistry is capable of involving a large family of materials, for example, metal oxides as cathode materials, or metals as anode materials, the research could be a model system to open a door to explore new aqueous battery materials and chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.