Abstract
Sorting a list means selection of the particular permutation of the members of that list in which the final permutation contains members in increasing or in decreasing order. Sorted list is prerequisite of some optimized operations such as searching an element from a list, locating or removing an element to/ from a list and merging two sorted list in a database etc. As volume of information is growing up day by day in the world around us and these data are unavoidable to manage for real life situations, the efficient and cost effective sorting algorithms are required. There are several numbers of fundamental and problem oriented sorting algorithms but still now sorting a problem has attracted a great deal of research, perhaps due to the complexity of solving it efficiently and effectively despite of its simple and familiar statements. Algorithms having same efficiency to do a same work using different mechanisms must differ their required time and space. For that reason an algorithm is chosen according to one’s need with respect to space complexity and time complexity. Now a day, space (Memory) is available in market comparatively in cheap cost. So, time complexity is a major issue for an algorithm. Here, the presented approach is to sort a list with linear time and space complexity using divide and conquer rule by partitioning a problem into n (input size) number of sub problems then these sub problems are solved recursively. Required time and space for the algorithm is optimized through reducing the height of the recursive tree and reduced height is too small (as compared to the problem size) to evaluate. So, asymptotic efficiency of this algorithm is very high with respect to time and space.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have