Abstract

Sodium and water retention is characteristic of edematous disorders including cardiac failure, cirrhosis, nephrotic syndrome, and pregnancy. In recent years, the use of a sensitive radioimmunoassay for plasma vasopressin has implicated the role of nonosmotic vasopressin release in the water retention of these edematous disorders. In experimental studies and studies in man, it has been found that the nonosmotic release of vasopressin is consistently associated with the activation of the sympathetic nervous and renin-angiotensin-aldosterone systems. Moreover, the sympathetic nervous system has been shown to be involved in the nonosmotic release of vasopressin (carotid and aortic baroreceptors) and in the activation of the renin-angiotensin system (renal beta-adrenergic receptors). These findings have led to our proposal that body fluid volume regulation involves the dynamic interaction between cardiac output and peripheral arterial resistance. In this context, neither total extracellular-fluid (ECF) volume nor blood volume are determinants of renal sodium and water excretion. Rather, renal sodium and water retention is initiated by either a fall in cardiac output (e.g. ECF volume depletion, low-output cardiac failure, pericardial tamponade, or hypovolemic nephrotic syndrome) or peripheral arterial vasodilation (e.g. high-output cardiac failure, cirrhosis, pregnancy, sepsis, arteriovenous fistulae, and pharmacologic vasodilators). With a decrease in effective arterial blood volume (EABV). initiated by either a fall in cardiac output or peripheral arterial vasodilation, the acute response involves vasoconstriction mediated by angiotensin, sympathetic mediators, and vasopressin. The slower response to restoring EABV involves vasopressin-mediated water retention and aldosterone-mediated sodium retention. The renal vasoconstriction which accompanies those states that decrease EABV, by either decreasing cardiac output or causing peripheral arterial vasodilation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call