Abstract
We apply a new kind of analytic technique, namely the homotopy analysis method (HAM), to give an explicit, totally analytic, uniformly valid solution of the two-dimensional laminar viscous flow over a semi-infinite flat plate governed by f‴(η)+αf(η)f″(η)+β[1−f′2(η)]=0 under the boundary conditions f(0)=f′(0)=0, f′(+∞)=1. This analytic solution is uniformly valid in the whole region 0[les ]η<+∞. For Blasius' (1908) flow (α=1/2, β=0), this solution converges to Howarth's (1938) numerical result and gives a purely analytic value f″(0)=0.332057. For the Falkner–Skan (1931) flow (α=1), it gives the same family of solutions as Hartree's (1937) numerical results and a related analytic formula for f″(0) when 2[ges ]β[ges ]0. Also, this analytic solution proves that when −0.1988[les ]β0 Hartree's (1937) family of solutions indeed possess the property that f′→1 exponentially as η→+∞. This verifies the validity of the homotopy analysis method and shows the potential possibility of applying it to some unsolved viscous flow problems in fluid mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.