Abstract

The problem of the diffraction of an arbitrary ray optical electromagnetic field by a smooth perfectly conducting convex surface is investigated. A pure ray optical solution to this problem has been developed by Keller within the framework of his geometrical theory of diffraction (GTD). However, the original GTD solution fails in the transition region adjacent to the shadow boundary where the diffracted field plays a significant role. A uniform GTD solution is developed which remains valid within the shadow boundary transition region, and which reduces to the GTD solution outside this transition region where the latter solution is valid. The construction of this uniform solution is based on an asymptotic solution obtained previously for a simpler canonical problem. The present uniform GTD solution can be conveniently and efficiently applied to many practical problems. Numerical results based on this uniform GTD solution are shown to agree very well with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.