Abstract

The first total synthesis of (S)-(+)-ovigerine, (S)-(+)-N-formylovigerine, and (6aS,6a'S)-(+)-ovigeridimerine of aporphine alkaloids with a benzo[d][1,3]dioxole structure feature was established. The strategy was based upon the well-known Pd-catalyzed arylation to set the aporphine framework, and Noyori asymmetric hydrogenation followed by diastereoselective resolution to achieve excellent enantioselectivity. By slightly modifying the total synthetic route and strategically combining it with a aza-Michael addition, Bischler-Napieralski reaction and N-arylation, this methodology was also applied to the total syntheses of benzo[d][1,3]dioxole-type benzylisoquinoline alkaloids of coptisines and dibenzopyrrocolines, including two impatiens, tetrahydrocoptisine, and quaternary coptisine bromide of coptisines and two dibenzopyrrocoline analogues, with the syntheses of all of these target compounds being efficient. Among the nine synthesized compounds, the total syntheses of the three aporphines and the two impatiens, all with ee values of greater than 99%, were reported for the first time. This work also represents the first unification of synthetic routes for the total synthesis of benzo[d][1,3]dioxole-type aporphines, coptisines, and dibenzopyrrocolines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.