Abstract
The article presents a mixed deep neural network (DNN) approach for detecting micron-scale fatigue damage in high-strength polycrystalline aluminum alloys. Fatigue testing is conducted using a custom-designed apparatus integrated with a confocal microscope and a moving stage to accurately pinpoint the instance of micron-scale crack emergence. The specimens are monitored throughout the duration of the experiment using a pair of high-frequency ultrasonic transducers. The mixed DNN is trained with ultrasonic time-series data that are obtained from two sets of specimens categorized by different stress concentration factors. To understand the effects of mixing the data from both types of specimens, a parametric analysis is performed by varying the amount of training data from each specimen to develop a series of mixed DNNs. The mixed DNN, when tested on unseen data from both specimens, exhibits an accuracy of over 95%. This article, therefore, demonstrates a successful alternative to customized DNNs for new types, geometries, or stress concentration factors in the materials under consideration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.