Abstract

Extraction of intravoxel incoherent motion (IVIM) parameters from noisy diffusion‐weighted (DW) images using a biexponential fitting model is computationally challenging, and the reliability of the estimated perfusion‐related quantities represents a limitation of this technique. Artificial intelligence can overcome the current limitations and be a suitable solution to advance use of this technique in both preclinical and clinical settings. The purpose of this work was to develop a deep neural network (DNN) approach, trained on numerical simulated phantoms with different signal to noise ratios (SNRs), to improve IVIM parameter estimation. The proposed approach is based on a supervised fully connected DNN having 3 hidden layers, 18 inputs and 3 targets with standardized values. 14 × 103 simulated DW images, based on a Shepp–Logan phantom, were randomly generated with varying SNRs (ranging from 10 to 100). 7 × 103 images (1000 for each SNR) were used for training. Performance accuracy was assessed in simulated images and the proposed approach was compared with the state‐of‐the‐art Bayesian approach and other DNN algorithms. The DNN approach was also evaluated in vivo on a high‐field MRI preclinical scanner. Our DNN approach showed an overall improvement in accuracy when compared with the Bayesian approach and other DNN methods in most of the simulated conditions. The in vivo results demonstrated the feasibility of the proposed approach in real settings and generated quantitative results comparable to those obtained using the Bayesian and unsupervised approaches, especially for D and f, and with lower variability in homogeneous regions. The DNN architecture proposed in this work outlines two innovative features as compared with other studies: (1) the use of standardized targets to improve the estimation of parameters, and (2) the implementation of a single DNN to enhance the IVIM fitting at different SNRs, providing a valuable alternative tool to compute IVIM parameters in conditions of high background noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.