Abstract
Minimum Dominating Set and Minimum Connected Dominating Set are classic graph problems that have been studied extensively in the literature. These two problems and their various variants are NP-hard in a general graph, and for some of them greedy approximation algorithms have been proposed. In this paper, by designing two potential functions that enjoy submodularity or a weak submodularity, we propose a unified O(lnδ)-approximation algorithm for a generalized Minimum (Connected) Dominating Set that includes Minimum (Connected) Dominating Set, Minimum (Connected) Total Dominating Set, Minimum (Connected) *-Dominating Set and Minimum (Connected) Positive Influence Dominating Set, where δ is the maximum node degree of the input graph. For each specific version of the generalized Minimum (Connected) Dominating Set, the unified algorithm either matches the best one of existing approximation algorithms, or gives the first approximation solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.