Abstract

A novel algorithm for the solution of the inverse dynamics problem is presented and augmented to the solution of the equations of motion (EOM) for rigid multibody chains using explicit constraint components of force. The unified model corresponds to an optimal, strictly parallel, time, space, and processor lower bound solution to the dynamics of accelerated rigid multibodies, i.e., computation time of O(log2n) using O(n) processors for an n body system. Complex topological structures are supported in the form of multiple degree-of-freedom (DOF) joints/hinges, free-floating, hyper-branched, and/or closed-chain systems, with applications ranging from multibody molecular dynamics simulations and computational molecular nanotechnology, to real-time control and simulation of spatial robotic manipulators. In addition to the theoretical significance, the algorithms presented are shown to be very efficient for practical implementation on MIMD parallel architectures for large-scale systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.