Abstract

A unified ductility criterion for fatigue–creep life prediction is presented based on the static fracture toughness exhaustion and dissipated cyclic strain energy density of high temperature components. It provides a general failure criterion for both low and high cycle fatigue regimes. The effects of mean stress, creep and loading waveform on fatigue life are incorporated into this criterion. Applicability and prediction accuracy of the newly proposed criterion was validated through comparing model predictions to experimental results taken from the literature. The results show that the proposed criterion is robust for different loading conditions and more accurate than other existing strain energy/ductility-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.