Abstract
We present a unified continuum mechanics representation of the mechanisms believed to be commonly involved in post-seismic transients such as viscoelasticity, fault creep and poroelasticity. The time-dependent relaxation that follows an earthquake, or any other static stress perturbation, is considered in a framework of a generalized viscoelastoplastic rheology whereby some inelastic strain relaxes a physical quantity in the material. The relaxed quantity is the deviatoric stress in case of viscoelastic relaxation, the shear stress in case of creep on a fault plane and the trace of the stress tensor in case of poroelastic rebound. In this framework, the instantaneous velocity field satisfies the linear inhomogeneous Navier's equation with sources parametrized as equivalent body forces and surface tractions. We evaluate the velocity field using the Fourier-domain Green's function for an elastic half-space with surface buoyancy boundary condition. The accuracy of the proposed method is demonstrated by comparisons with finite-element simulations of viscoelastic relaxation following strike-slip and dip-slip ruptures for linear and power-law rheologies. We also present comparisons with analytic solutions for afterslip driven by coseismic stress changes. Finally, we demonstrate that the proposed method can be used to model time-dependent poroelastic rebound by adopting a viscoelastic rheology with bulk viscosity and work hardening. The proposed method allows one to model post-seismic transients that involve multiple mechanisms (afterslip, poroelastic rebound, ductile flow) with an account for the effects of gravity, non-linear rheologies and arbitrary spatial variations in inelastic properties of rocks (e.g. the effective viscosity, rate-and-state frictional parameters and poroelastic properties).
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have