Abstract

A unified cellular method for matrix multiplication is proposed. The method is a hybrid of three methods, namely, Strassen's and Laderman's recursive methods and a fast cellular method for matrix multiplication. The interaction of these three methods provides the highest (in comparison with well-known methods) percentage (equal to 37%) of minimization of the multiplicative, additive, and overall complexities of cellular analogues of well-known matrix multiplication algorithms. The estimation of the computational complexity of the unified method is illustrated by an example of obtaining a cellular analogue of the traditional matrix multiplication algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.