Abstract
This paper proposes a cellular method of matrix multiplication. The method reduces the multiplicative and additive complexities of well-known matrix multiplication algorithms by 12.5%. The computational complexities of cellular analogs of such algorithms are estimated. A fast cellular analog is presented whose multiplicative and additive complexities are equal to ?0.382n3 multiplications and ?1.147n3 additions, respectively, where n is the order of the matrices being multiplied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.