Abstract

Penalized quantile regression (QR) is widely used for studying the relationship between a response variable and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed method brings an interesting tradeoff between statistical accuracy and computational efficiency for both standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting penalized convolution smoothed quantile regression with various commonly used convex penalties, accompanied by an R-language package conquer available from the Comprehensive R Archive Network. We perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm over existing methods in both statistical and computational aspects. We further exemplify the proposed algorithm by fitting a fused lasso additive QR model on the world happiness data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.