Abstract

A calibrated and physically based mobility model is developed for three-dimensional simulation of submicron metal-oxide-semiconductor (MOS) devices, in which the inversion layer mobility is emphasized. This inversion layer mobility can be generalized into a local form, i.e., expressed as functions of the local electric field at each grid point, so that it is well suited for device simulation. The resulting 3-D mobility model accurately characterizes the significant physical scattering effects including the Coulomb screening effect, quantum channel broadening effect, surface roughness scattering, structure-induced lateral surface scattering and velocity saturation limited effects. Results show that this new model can be incorporated into device simulators for accurately predicting drain currents of submicron LDD MOS devices. Moreover, the results compare more favorably with the experimental data than do those for other reported models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.