Abstract
The high dielectric constant of insulators currently investigated as alternatives to SiO2 in metal–oxide–semiconductor structures is due to their large ionic polarizability. This is usually accompanied by the presence of soft optical phonons. We show that the long-range dipole field associated with the interface excitations resulting from these modes and from their coupling with surface plasmons, while small in the case of SiO2, for most high-κ materials causes a reduction of the effective electron mobility in the inversion layer of the Si substrate. We study the dispersion of the interfacial coupled phonon-plasmon modes, their electron-scattering strength, and their effect on the electron mobility for Si-gate structures employing films of SiO2, Al2O3, AlN, ZrO2, HfO2, and ZrSiO4 for “SiO2-equivalent” thicknesses ranging from 5 to 0.5 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.