Abstract

A ubiquitous healthcare (UH) system of multiple 3D printing facilities is established in this study for making dentures. The UH system receives orders from dental clinics, and then distributes the dentures to be printed among 3D printing facilities to save time. Compared with existing systems for similar purposes, the UH system has two novel features. The first is the consideration of the possibility of reprinting in formulating the plan to avoid replanning. The other is the cooperation with home delivery services that have gradually become popular during the COVID-19 pandemic to save transportation time. The new features are subject to considerable uncertainties. To account for the uncertainties, both printing time and transportation time are modelled using interval type-II trapezoidal fuzzy numbers. Subsequently, an interval type-II fuzzy mixed integer-linear programming (FMILP) model is formulated and optimized to plan the operations of the UH system. A case study has been conducted to illustrate the applicability of the proposed methodology. According to experimental results, the proposed methodology was able to shorten the order fulfillment time by up to 9%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.