Abstract

In recent years, the technology of small-scale unmanned aerial vehicles (UAVs) has steadily improved in terms of flight time, automatic control, and image acquisition. This has lead to the development of several applications for low-altitude tasks, such as vehicle tracking, person identification, and object recognition. These applications often require to stitch together several video frames to get a comprehensive view of large areas (mosaicking), or to detect differences between images or mosaics acquired at different times (change detection). However, the datasets used to test mosaicking and change detection algorithms are typically acquired at high-altitudes, thus ignoring the specific challenges of low-altitude scenarios. The purpose of this paper is to fill this gap by providing the UAV mosaicking and change detection dataset. It consists of 50 challenging aerial video sequences acquired at low-altitude in different environments with and without the presence of vehicles, persons, and objects, plus metadata and telemetry. In addition, this paper provides some performance metrics to evaluate both the quality of the obtained mosaics and the correctness of the detected changes. Finally, the results achieved by two baseline algorithms, one for mosaicking and one for detection, are presented. The aim is to provide a shared performance reference that can be used for comparison with future algorithms that will be tested on the dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.