Abstract

This paper describes ongoing research to develop a framework for implementing dynamically reconfiguring avionics and control systems for unmanned aerial vehicles (UAVs) and a test and development environment for experimental UAVs. The framework supports graceful degradation , where hardware and software failures cause a reduction in the quality or capability of the control system but does not result in total system failure. The approach uses a graphical specification representing modular software interdependencies and a runtime system manager that reconfigures the system. The techniques are currently being applied to the design of UAV control systems as part of the BIG BLUE Mars airplane testbed project at the University of Kentucky.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.