Abstract

The two-dimensional heterostructures with type-II band alignment and super-high carrier mobility offer an updated perspective for photovoltaic devices. Here, based on the first-principles calculation, a novel vertical NGyne/GaSe heterostructure with an intrinsic type-II band alignment, super-high carrier mobility (104 cm2 V−1 s−1), and strong visible to ultraviolet light absorption (104–105 cm−1) is constructed. We investigate the electronic structure and the interfacial properties of the NGyne/GaSe heterostructure under electric field and strain. The band offsets and band gap of the NGyne/GaSe heterostructure can be regulated under applied vertical electric field and strain efficiently. Further study reveals that the photoelectric conversion efficiency of the NGyne/GaSe heterostructure is vastly improved under a negative electric field and reaches up to 25.09%. Meanwhile, near-free electron states are induced under a large applied electric field, leading to the NGyne/GaSe heterostructure transform from semiconductors to metal. Our results indicate that the NGyne/GaSe heterostructure will have extremely potential in optoelectronic devices, especially solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.