Abstract

Purpose – With increasing demand of localization service in challenging environments where Global Navigation Satellite Systems (GNSS) signals are considerably weak, a powerful approach, the collective detection (CD), has been developed. However, traditional CD techniques are computationally intense due to the large clock bias search space. Therefore, the purpose of this paper is to develop a new scheme of CD with less computational burden, in order to accelerate the detection and location process. Design/methodology/approach – This paper proposes a new scheme of CD. It reformulates the problem of GNSS signal detection as an optimization problem, and solves it with the aid of an improved Pigeon-Inspired Optimization (PIO). With the improved PIO algorithm adopted, the positioning algorithm arrives to evaluate only a part of the points in the search space, avoiding the problems of grid-search method which is universally adopted. Findings – Faced with the complex optimization problem, the improved PIO algorithm proves to have good performance. In the acquisition of simulated and real signals, the proposed scheme of CD with the improved PIO algorithm also have better efficiency, precision and stability than traditional CD algorithm. Besides, the improved PIO algorithm also proves to be a better candidate to be integrated into the proposed scheme than particle swarm optimization, differential evolution and PIO. Originality/value – The novelty associated with this paper is the proposition of the new scheme of CD and the improvement of PIO algorithm. Thus, this paper introduces another possibility to ameliorate the traditional CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.