Abstract
At present, vision-based hand gesture recognition is very important in human-robot interaction (HRI). This non-contact method enables natural and friendly interaction between people and robots. Aiming at this technology, a two-stream CNN framework (2S-CNN) is proposed to recognize the American sign language (ASL) hand gestures based on multimodal (RGB and depth) data fusion. Firstly, the hand gesture data is enhanced to remove the influence of background and noise. Secondly, hand gesture RGB and depth features are extracted for hand gesture recognition using CNNs on two streams, respectively. Finally, a fusion layer is designed for fusing the recognition results of the two streams. This method utilizes multimodal data to increase the recognition accuracy of the ASL hand gestures. The experiments prove that the recognition accuracy of 2S-CNN can reach 92.08\(\%\) on ASL fingerspelling database and is higher than that of baseline methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.