Abstract

This paper presents an analytical approach to calculate the effective diffusion coefficient of chlorides in concrete with both natural and recycled concrete aggregates. In the approach the concrete is treated as a composite consisting of three phases, namely mortar, natural aggregate plus interfacial transition zone, and recycled concrete aggregate plus interfacial transition zone. The effective diffusion coefficient of chlorides in the composite is calculated through two steps. The first step is to calculate the effective diffusion coefficients of chlorides in the natural aggregate plus interfacial transition zone and in the recycled concrete aggregate plus interfacial transition zone by using multilayer spherical approximation, the results of which provide the information about the quality of recycled concrete aggregate in terms of chloride penetration resistance. The second step is to calculate the effective diffusion coefficient of chlorides in the three-phase concrete composite by using effective medium approximation, the results of which provide the information about the influence of recycled concrete aggregate on the diffusivity of recycled aggregate concrete. The analytical expression of the effective diffusion coefficient is derived and carefully compared with the results obtained from both the experiments and numerical simulations, which demonstrates that the present analytical model is rational and reliable. The analytical expression presented can be used to predict the service life of recycled aggregate concrete exposed to chloride environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call