Abstract
A two variable model with delay in both the variables, is proposed for the circadian oscillations of protein concentrations in the fungal species Neurospora crassa. The dynamical variables chosen are the concentrations of FRQ and WC-1 proteins. Our model is a two variable simplification of the detailed model of Smolen et al. (J. Neurosci. 21 (2001) 6644) modeling circadian oscillations with interlocking positive and negative feedback loops, containing 23 variables. In our model, as in the case of Smolen's model, a sustained limit cycle oscillation takes place in both FRQ and WC-1 protein in continuous darkness, and WC-1 is anti-phase to FRQ protein, as observed in experiments. The model accounts for various characteristic features of circadian rhythms such as entrainment to light dark cycles, phase response curves and robustness to parameter variation and molecular fluctuations. Simulations are carried out to study the effect of periodic forcing of circadian oscillations by light–dark cycles. The periodic forcing resulted in a rich bifurcation diagram that includes quasiperiodicity and chaotic oscillations, depending on the magnitude of the periodic changes in the light controlled parameter. When positive feedback is eliminated, our model reduces to the generic one dimensional delay model of Lema et al. (J. Theor. Biol. 204 (2000) 565), delay model of the circadian pace maker with FRQ protein as the dynamical variable which represses its own production. This one-dimensional model also exhibits all characteristic features of circadian oscillations and gives rise to circadian oscillations which are reasonably robust to parameter variations and molecular noise.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have