Abstract
Biocompatibility is one of the crucial requirements to be fulfilled when designing devices for immunoisolation of transplanted cells. The quality of the capsule surface (smoothness/roughness) influences the nature of cell overgrowth on it by immunocytes, which eventually may lead to the transplant failure. A microcapsule has been developed based on the polyelectrolyte complexation of the polyanions sodium alginate and cellulose sulphate with the polycation poly(methylene-co-guanidine), which was successfully tested in rodent animal models. Recently, the principles for controlling the surface smoothness of these capsules has been identified. This paper reports on a two-step process used for production of stable capsules with improved surface properties. The methodology involves separating the process of drop shape recovery and precursor capsule formation from the process of membrane formation by applying a two-reactor design. The multi-loop reactors are connected in series, and the process separation is given by the different composition of cation solutions flowing in each reactor. This process enables one to prepare the microcapsule immunoisolation device, which can differ in the extent of surface roughness and, thus, is suitable for studying the effect of surface morphology of the immunoisolation device on cell overgrowth. The effect of this process on the capsule permeability has also been evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.