Abstract
A whole-cell epoxide-hydrolyzing biocatalyst designed as uniform polyelectrolyte complex capsules was developed. Nocardia tartaricans bacterial cells with cis-epoxysuccinate (CES) hydrolase activity were used as a model microbial strain. Stereospecific hydrolysis of CES catalyzed by CES hydrolase in encapsulated cells yields enantiomerically pure l-(+)-tartrate. An air-stripping device with multiloop reactor was used for controlled production of capsules containing bacterial cells with the standard deviation in diameter below 4% and in membrane thickness below 7%. Capsules formed by polyelectrolyte complexation of sodium alginate and cellulose sulfate as polyanions, poly(methylene- co-guanidine) as polycation, CaCl 2 and NaCl (SA-CS/PMCG) provide a favorable microenvironment for encapsulated cells. Biotransformation was monitored by RP-HPLC, electrospray ionization mass spectrometry and optical rotation. The results are discussed in view of data previously obtained by cell entrapment in hardened calcium pectate gelled beads (CPG). Encapsulation of the whole -cell biocatalyst in SA-CS/PMCG capsules leads to (i) about two-fold increase, from 91.5 to 208.2 U/mg, in the CES hydrolase activity, (ii) a decreased time required for total biotransformation, from 5.5 to 3 h, and (iii) a significantly improved relative increase in CES hydrolase activity during 51 days of storage, from about 3-fold to about 20-fold, compared to the CPG beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.