Abstract
This paper presents a novel two-step approach to identifying structural damages in bridge structure through the integration of 1D Convolutional Neural Network (1DCNN) and Long Short-Term Memory (LSTM) networks, enhanced by the augmentation and transformation techniques using Symbolic Aggregate approXimation (SAX) for time-series data analysis. In the first step, the time-series data of the bridge is diversified and quantified by augmentation techniques to make the model more robust and increase its generalization capabilities. After that, SAX is implemented to reduce the volume and categorize time series data through the transformation of continuous time series into discrete symbols, thereby decreasing the size of the data for more efficient training performance. In the second step, an advanced DL model combining 1DCNN and LSTM is proposed to tackle the damage identification problems of the processed data. By leveraging the strengths of CNNs in feature extraction and LSTMs in sequence learning, combined with advanced techniques for data augmentation, our methodology offers a robust solution not only for improving the model's training process but also for enabling it to learn from a more diverse and comprehensive dataset that mimics different damage scenarios, allowing more accurate detection of damages within bridge structures. Validation of the proposed method is conducted using time-series data collected from Chuong Duong Bridge structure. The effectiveness of the proposed method is compared with other models, such as 1DCNN, LSTM, and the combined 1DCNN-LSTM. The results show that the proposed 1DCNN-LSTM-SAX outperforms the other methods in terms of accuracy and, thus, can be used extensively to deal with the damage identification problems of bridges using time-series data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have