Abstract
We have developed a new concept for providing tropospheric augmentation corrections. The two-stage correction model combines data from a Numerical Weather Model (NWM) and precise ZTDs estimated from Global Navigation Satellite System (GNSS) permanent stations in regional networks. The first-stage correction is generated using the background NWM forecast only. The second-stage correction results from an optimal combination of the background model data and GNSS (near) real-time tropospheric products. The optimum correction is achieved when using NWM for the hydrostatic delay modeling and for vertical scaling, while GNSS products are used for correcting the non-hydrostatic delay. The method is assessed in several variants including study of the combination of NWM and GNSS data, spatial densification of the original NWM grid, and GNSS ZTD densification using tropospheric linear horizontal gradients. The first-stage correction can be characterized by overall accuracy of about 10 mm for ZTD (1-sigma). The second-stage correction supported with GNSS tropospheric products improved the first-stage correction by a factor of 2–4 in terms of the ZTD accuracy and by a factor of 2.5 in terms of its spatio-temporal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.