Abstract
In this paper we propose a two-stage algorithm for oil slick segmentation in synthetic aperture radar (SAR) images. In the first stage, we propose a new variational model to reduce speckles in non-textured SAR images. Applications to simulated and real SAR images show that the method is well balanced in the quality of the conventional criteria. Then, in the second stage, we use the fast Chan–Vese (CV) model and the level set method to segment the oil slick in the de-speckled SAR image. The additive operator splitting (AOS) scheme is used in the numerical implementation to improve computational efficiency. Experimental results show that our two-stage algorithm is effective for oil slick segmentation in SAR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.