Abstract
In Wireless Sensor Network (WSN), node localization is a crucial need for precise data gathering and effective communication. However, high energy requirements, long inter-node distances and unpredictable limitations create problems for traditional localization techniques. This study proposes an innovative two-stage approach to improve localization accuracy and maximize route selection in WSNs. In the first stage, the Self-Adaptive Binary Waterwheel Plant Optimization (SA-BWP) algorithm is used to evaluate a node’s trustworthiness to achieve accurate localization. In the second stage, the Gazelle-Enhanced Binary Waterwheel Plant Optimization (G-BWP) method is employed to determine the most effective data transfer path between sensor nodes and the sink. To create effective routes, the G-BWP algorithm takes into account variables like energy consumption, shortest distance, delay and trust. The goal of the proposed approach is to optimize WSN performance through precise localization and effective routing. MATLAB is used for both implementation and evaluation of the model, which shows improved performance over current methods in terms of throughput, delivery ratio, network lifetime, energy efficiency, delay reduction and localization accuracy in terms of various number of nodes and rounds. The proposed model achieves highest delivery ratio of 0.97, less delay of 5.39, less energy of 23.3 across various nodes and rounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have