Abstract

Wormlike micelles are self-assemblies of polymer chains that can break and recombine reversibly. In this paper, we derive a thermodynamically consistent two-species micro–macro model of wormlike micellar solutions by employing an energetic variational approach. The model incorporates a breakage and combination process of polymer chains into the classical micro–macro dumbbell model of polymeric fluids in a unified variational framework. We also study different maximum entropy closure approximations to the micro-macro model by “variation-then-closure” and “closure-then-variation” approaches. By imposing a proper dissipation in the coarse-grained level, the closure model, obtained by “closure-then-variation”, preserves the thermodynamical structure of both mechanical and chemical parts of the original system. Several numerical examples show that the closure model can capture the key rheological features of wormlike micellar solutions in shear flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.