Abstract
This paper proposes a new optimization model for the network design problem of the demand-responsive customized bus (CB). The proposed model consists of two phases: inserting passenger requests dynamically in an interactive manner (dynamic phase) and optimizing the service network statically based on the overall demand (static phase). In the dynamic phase, we propose a hierarchical decision-making model to describe the interactive manner between operator and passengers. The CB network design problem is formulated in a mixed-integer program with the objective of maximizing operator’s revenue. The CB passenger’s travel behavior is measured by a discrete choice model given the trip plan provided by the operator. A dynamic insertion method is developed to address the proposed model in the dynamic phase. For the network design problem in the static phase, the service network is re-optimized based on the confirmed passengers with strict time deviation constraints embedded in the static multi-vehicle pickup and delivery problem. An exact solution method is developed based on the branch-and-bound (B&B) algorithm. Numerical examples are conducted to verify the proposed models and solution algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.